slava68: (Default)
[personal profile] slava68
Оригинал взят у [livejournal.com profile] ibigdan в Мне нужен твой пинбол, одежда и мотоцикл!
Компания Google создала систему искусственного интеллекта, которая играет лучше человека во многие аркадные игры. Программа научилась играть, не зная правил и не имея доступа к коду, а просто наблюдая за картинкой на экране.



Эта разработка не такая легкомысленная, как может показаться. Универсальная самообучаемая система когда-нибудь может найти применение, например, в автономных автомобилях и других проектах, где нужно анализировать состояние окружающих объектов и принимать решения. Скажем, при установке в автономный автомобиль ИИ методом проб и ошибок определит, на какой сигнал светофора лучше проезжать перекрёсток. Если без шуток, то программа способна находить решение для широкого спектра задач, независимо от правил и начальных условий.

Интересно ещё и то, что в 20 играх ИИ не смог превзойти человека. Например, он серьёзно облажался в игре Pac-Man, так и не научившись планировать свои действия на несколько секунд вперёд. Он также не понял, что съев определённые волшебные шарики можно пожирать призраков. В итоге, программа сумела набрать всего 13% от рекорда, поставленного лучшим профессиональным игроком.

Тренировку нейросети под названием DQN осуществило лондонское подразделение Google DeepMind. Искусственному интеллекту не сообщали правила игры. Нейросеть сама анализировала состояние и искала способ, каким образом набрать максимальное количество очков. При обучении и принятии решения она учитывала только четыре последних кадра.

В результате DQN смогла в 22 из 49 игр превзойти лучший результат людей-игроков и в 43 из 49 игр победить любой другой специализированный компьютерный алгоритм.



«Это действительно первый в мире алгоритм, который соответствует человеческому уровню на большом разнообразии сложных задач», — говорит Демис Хассабис (Demis Hassabis), сооснователь DeepMind.

Результаты исследования опубликованы в журнале Nature.


ссылка на ютуб

Обучаемые нейросети часто используют в системах распознавания образов, а DeepMind использовала метод обучения с подкреплением, когда ИИ получает «вознаграждение» за выполнение определённых действий — и самостоятельно улучшает результат по мере накопления опыта.

Программа лучше всего проявила себя в простых играх вроде пинбола (2439% от результата человека), бокса (1607%) и в игре Breakout (1227%), где нужно отбивать мячик, расчищая блоки на экране. Она даже освоили трюк профессиональных игроков, когда в массиве блоков пробивается туннель и шарик запускается в верхнюю часть экрана!


ссылка на ютуб

«Это очень удивило нас, — сказал Хассабис. — Такая стратегия полностью вытекает из лежащей в основе игровой механики».

Компьютеры давно используются для управления игровым процессом, но современные системы ИИ вышли на новый уровень. Самообучение DQN предполагало анализ информации на экране в реальном времени, то есть обработку примерно 2 млн пикселей в секунду. Такими темпами ИИ в будущем сможет научиться анализировать окружающую действительность настоящего мира в реальном времени, снимая всё вокруг себя с помощью видеокамер. Это открывает для него совершенно новые области применения.

источник
This account has disabled anonymous posting.
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

Profile

slava68: (Default)
slava68

February 2026

S M T W T F S
1234567
891011121314
15161718192021
22232425262728

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Feb. 13th, 2026 11:06 am
Powered by Dreamwidth Studios